Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Emerg Infect Dis ; 29(5): 1007-1010, 2023 05.
Article in English | MEDLINE | ID: covidwho-20245370

ABSTRACT

Increasing reports of invasive Streptococcus pyogenes infections mandate surveillance for toxigenic lineage M1UK. An allele-specific PCR was developed to distinguish M1UK from other emm1 strains. The M1UK lineage represented 91% of invasive emm1 isolates in England in 2020. Allele-specific PCR will permit surveillance for M1UK without need for genome sequencing.


Subject(s)
Scarlet Fever , Streptococcal Infections , Humans , Streptococcus pyogenes/genetics , Scarlet Fever/epidemiology , Alleles , England/epidemiology , Streptococcal Infections/diagnosis , Streptococcal Infections/epidemiology , Polymerase Chain Reaction , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics
2.
Nature ; 617(7961): 555-563, 2023 May.
Article in English | MEDLINE | ID: covidwho-2323608

ABSTRACT

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Subject(s)
Adenovirus Infections, Human , Dependovirus , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/virology , Alleles , Case-Control Studies , CD4-Positive T-Lymphocytes/immunology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/isolation & purification , Genetic Predisposition to Disease , Helper Viruses/isolation & purification , Hepatitis/epidemiology , Hepatitis/genetics , Hepatitis/virology , Hepatocytes/virology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Liver/virology
3.
Nitric Oxide ; 134-135: 44-48, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2295080

ABSTRACT

BACKGROUND: There is a hypothesis that a sufficient level of endothelial nitric oxide synthase is important for reliable protection against COVID-19. Theoretical ideas about the NOS3 gene demonstrated that it can have an effect on links of the complications pathogenesis in COVID-associated pneumonia. We determined the goal - to investigate the association of the NOS3 gene variants with the occurrence of the disease and its clinical course in patients of the intensive care unit. METHODS: The study group included 117 patients with a diagnosis of severe "viral COVID-19 pneumonia". Determination of NOS3 gene variants was performed using the PCR method. The probability of differences in the quantitative results were determined using ANOVA or Kruskal-Wallis test (depend of normality of studied parameters). RESULTS: Our results indicate that the presence of the NOS3 gene 4a allele increase the risk of complicated COVID-19-associated pneumonia (χ2 = 18.84, p = 0.00001, OR = 3.53 (1.95-6.39)). It was showed, that carriers of the 4aa genotype had a significantly higher ratio of SpO2/FiO2 on the first and second days after hospitalization (p = 0.017 and p = 0.03, respectively). Patients with the 4aa genotype also had the acid-base imbalances, as showed by indicators of base deficiency and standard bicarbonate, which were beyond the reference values. Potassium and sodium concentrations on the first and second day after hospitalization were also significantly lower in patients with 4aa genotype (p = 0.009 and p = 0.048, respectively), for whom, in the same time, the concentrations of C-reactive protein and total bilirubin were significantly higher (p = 0.002 and p = 0.033, respectively). CONCLUSIONS: Our results confirmed that the rs61722009 variant of the NOS3 gene is associated with an increased risk of severe СOVID-19-associated pneumonia and its adverse clinical course with potential progression of kidney and liver damage, and occurrence risk of systemic inflammatory response syndrome. These results require further research for the new metabolic strategy formation, in order to prevent the severe COVID-19 associated pneumonia and its complications.


Subject(s)
COVID-19 , Nitric Oxide Synthase Type III , Humans , Nitric Oxide Synthase Type III/genetics , COVID-19/genetics , Genotype , Alleles , Disease Progression
4.
Swiss Med Wkly ; 150: w20248, 2020 04 06.
Article in English | MEDLINE | ID: covidwho-2249057
5.
J Infect Dev Ctries ; 17(3): 327-334, 2023 03 31.
Article in English | MEDLINE | ID: covidwho-2260522

ABSTRACT

INTRODUCTION: Severe coronavirus disease 2019 (COVID-19) is mainly precipitated by an uncontrolled inflammatory response and cytokine storm. Pro-inflammatory cytokines such as IL-6 and IL-8 levels were markedly increased in complicated cases. Genetic polymorphisms may have a role in this dysregulated expression during SARS-CoV-2 infection. Our aim was to assess the influence of IL-6 and IL-8 single nucleotide polymorphisms (SNPs) on COVID-19 outcomes. METHODOLOGY: 240 subjects were involved in the study; 80 cases with severe COVID-19, 80 cases with mild COVID-19, and 80 healthy subjects. IL-6rs1800795(G/C) and IL-8 rs2227306(C/T) genotyping was performed using real-time polymerase chain reaction (PCR). RESULTS: Ages ranged between 20-67 years in all groups. There was a statistically significant association between the male gender and severe COVID-19. A significantly higher expression of IL-6rs1800795GG and IL-8rs2227306CC genotypes was observed among patients with severe COVID-19 than other groups. At the allele level, IL-6rs1800795G and IL-8rs2227306C alleles were more frequent among patients with severe COVID-19 when compared with other groups. Haplotypes' frequency clarified that the coexistence of IL-6 rs1800795G and IL-8rs2227306C alleles in the same person increased the risk of severe COVID-19 outcomes. Carriers of IL-6rs1800795C and IL-8 rs2227306T alleles are at lower risk of developing severe COVID-19. Multivariate logistic regression analysis showed that old age, male gender, IL-6 rs1800795CG+GG, and IL-8 rs2227306CT+CC genotypes could be independent risk factors for severe COVID-19 outcomes. CONCLUSIONS: IL-6 rs1800795G and IL-8 rs2227306C alleles are significantly associated with severe COVID-19 outcomes, especially if they coexist. They may be used as prognostic markers for COVID-19.


Subject(s)
COVID-19 , Interleukin-6 , Humans , Male , Young Adult , Adult , Middle Aged , Aged , Interleukin-6/genetics , Interleukin-8/genetics , Genetic Predisposition to Disease , COVID-19/genetics , SARS-CoV-2/genetics , Genotype , Polymorphism, Single Nucleotide , Alleles , Case-Control Studies
6.
Viral Immunol ; 36(4): 241-249, 2023 05.
Article in English | MEDLINE | ID: covidwho-2259868

ABSTRACT

Individuals with no known comorbidities or risk factors may develop severe coronavirus disease 2019 (COVID-19). The present study assessed the effect of certain host polymorphisms and viral lineage on the severity of COVID-19 among hospitalized patients with no known comorbidities in Mexico. The analysis included 117 unrelated hospitalized patients with COVID-19. Patients were stratified by whether they required intensive care unit (ICU) admission: the ICU group (n = 40) and non-ICU group (n = 77). COVID-19 was diagnosed on the basis of a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription-polymerase chain reaction (RT-PCR) assay and clinical and radiographic criteria. The presence of the IL1B-31 (T/C) polymorphism was determined for all patients using PCR and nucleotide sequencing. Genotyping of the IL-4 (-590, T/C) and IL-8 (-251, T/A) polymorphisms was performed by the amplification refractory mutation system-PCR method. Genotyping of IL1-RN was performed using PCR. Viral genome sequencing was performed using the ARTIC Network amplicon sequencing protocol using a MinION. Logistic regression analysis identified the carriage of IL-1 B*-31 *C as an independent potential risk factor (odds ratio [OR] = 3.1736, 95% confidence interval [CI] = 1.0748-9.3705, p = 0.0366) for ICU admission and the presence of IL-RN*2 as a protective factor (OR = 0.4371, 95% CI = 0.1935-0.9871, p = 0.0465) against ICU admission. Under the codominant model, the CC genotype of IL1B-31 significantly increased the risk of ICU admission (OR: 6.38, 95% CI: 11.57-25.86, p < 0.024). The IL1B-31 *C-IL-4-590 *T haplotype increased the risk of ICU admission (OR = 2.53, 95% CI = 1.02-6.25, p = 0.047). The 42 SARS-CoV-2 genomes sequenced belonged to four clades, 20A-20D. No association was detected between SARS-CoV-2 clades and ICU admission or death. Thus, in patients with no known comorbidities or risk factors, the IL1B-31*C proinflammatory allele was observed to be associated with the risk of ICU admission owing to COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Alleles , Interleukin-4 , Hospitalization
7.
Front Immunol ; 13: 1101526, 2022.
Article in English | MEDLINE | ID: covidwho-2259532

ABSTRACT

Introduction: Cell entry of SARS-CoV-2 causes genome-wide disruption of the transcriptional profiles of genes and biological pathways involved in the pathogenesis of COVID-19. Expression allelic imbalance is characterized by a deviation from the Mendelian expected 1:1 expression ratio and is an important source of allele-specific heterogeneity. Expression allelic imbalance can be measured by allele-specific expression analysis (ASE) across heterozygous informative expressed single nucleotide variants (eSNVs). ASE reflects many regulatory biological phenomena that can be assessed by combining genome and transcriptome information. ASE contributes to the interindividual variability associated with the disease. We aim to estimate the transcriptome-wide impact of SARS-CoV-2 infection by analyzing eSNVs. Methods: We compared ASE profiles in the human lung cell lines Calu-3, A459, and H522 before and after infection with SARS-CoV-2 using RNA-Seq experiments. Results: We identified 34 differential ASE (DASE) sites in 13 genes (HLA-A, HLA-B, HLA-C, BRD2, EHD2, GFM2, GSPT1, HAVCR1, MAT2A, NQO2, SUPT6H, TNFRSF11A, UMPS), all of which are enriched in protein binding functions and play a role in COVID-19. Most DASE sites were assigned to the MHC class I locus and were predominantly upregulated upon infection. DASE sites in the MHC class I locus also occur in iPSC-derived airway epithelium basal cells infected with SARS-CoV-2. Using an RNA-Seq haplotype reconstruction approach, we found DASE sites and adjacent eSNVs in phase (i.e., predicted on the same DNA strand), demonstrating differential haplotype expression upon infection. We found a bias towards the expression of the HLA alleles with a higher binding affinity to SARS-CoV-2 epitopes. Discussion: Independent of gene expression compensation, SARS-CoV-2 infection of human lung cell lines induces transcriptional allelic switching at the MHC loci. This suggests a response mechanism to SARS-CoV-2 infection that swaps HLA alleles with poor epitope binding affinity, an expectation supported by publicly available proteome data.


Subject(s)
COVID-19 , Humans , Alleles , Epitopes , Haplotypes , Lung , Methionine Adenosyltransferase , SARS-CoV-2 , Histocompatibility Antigens Class I/genetics
9.
Alzheimers Dement ; 19(6): 2742-2744, 2023 06.
Article in English | MEDLINE | ID: covidwho-2277705

ABSTRACT

INTRODUCTION: People with COVID-19 had poorer general cognitive functioning compared to people without COVID-19. The causal link between COVID-19 and cognitive impairment is still unknown. METHODS: Mendelian randomization (MR) is a statistical approach based on genome-wide association studies (GWAS) to construct instrumental variables (IVs) and can effectively bring down the confounding bias of environmental or other disease factors, because alleles are randomly assigned to offspring. RESULTS: There was consistent evidence that cognitive performance was causally associated with COVID-19; this suggests that people with better cognitive performance are less likely to be infected with COVID-19. The reverse MR analysis treating COVID-19 as the exposure and cognitive performance as the outcome demonstrated an insignificant association, indicating the unidirectionality of the relationship. DISCUSSION: Our study provided credible evidence that cognitive performance has an impact on COVID-19. Future research should focus on long-term impact of cognitive performance on COVID-19.


Subject(s)
COVID-19 , Mendelian Randomization Analysis , Humans , Genome-Wide Association Study , Alleles , Polymorphism, Single Nucleotide
10.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: covidwho-2253194

ABSTRACT

STAT2 is a transcription factor activated by type I and III IFNs. We report 23 patients with loss-of-function variants causing autosomal recessive (AR) complete STAT2 deficiency. Both cells transfected with mutant STAT2 alleles and the patients' cells displayed impaired expression of IFN-stimulated genes and impaired control of in vitro viral infections. Clinical manifestations from early childhood onward included severe adverse reaction to live attenuated viral vaccines (LAV) and severe viral infections, particularly critical influenza pneumonia, critical COVID-19 pneumonia, and herpes simplex virus type 1 (HSV-1) encephalitis. The patients displayed various types of hyperinflammation, often triggered by viral infection or after LAV administration, which probably attested to unresolved viral infection in the absence of STAT2-dependent types I and III IFN immunity. Transcriptomic analysis revealed that circulating monocytes, neutrophils, and CD8+ memory T cells contributed to this inflammation. Several patients died from viral infection or heart failure during a febrile illness with no identified etiology. Notably, the highest mortality occurred during early childhood. These findings show that AR complete STAT2 deficiency underlay severe viral diseases and substantially impacts survival.


Subject(s)
COVID-19 , Encephalitis, Herpes Simplex , Influenza, Human , Pneumonia , Virus Diseases , Humans , Child, Preschool , Virus Diseases/genetics , Alleles , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics
11.
Elife ; 122023 02 08.
Article in English | MEDLINE | ID: covidwho-2233740

ABSTRACT

SARS-CoV-2 has adapted in a stepwise manner, with multiple beneficial mutations accumulating in a rapid succession at origins of VOCs, and the reasons for this are unclear. Here, we searched for coordinated evolution of amino acid sites in the spike protein of SARS-CoV-2. Specifically, we searched for concordantly evolving site pairs (CSPs) for which changes at one site were rapidly followed by changes at the other site in the same lineage. We detected 46 sites which formed 45 CSP. Sites in CSP were closer to each other in the protein structure than random pairs, indicating that concordant evolution has a functional basis. Notably, site pairs carrying lineage defining mutations of the four VOCs that circulated before May 2021 are enriched in CSPs. For the Alpha VOC, the enrichment is detected even if Alpha sequences are removed from analysis, indicating that VOC origin could have been facilitated by positive epistasis. Additionally, we detected nine discordantly evolving pairs of sites where mutations at one site unexpectedly rarely occurred on the background of a specific allele at another site, for example on the background of wild-type D at site 614 (four pairs) or derived Y at site 501 (three pairs). Our findings hint that positive epistasis between accumulating mutations could have delayed the assembly of advantageous combinations of mutations comprising at least some of the VOCs.


Subject(s)
Amino Acids , Evolution, Molecular , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Alleles , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
12.
Br J Biomed Sci ; 80: 11044, 2023.
Article in English | MEDLINE | ID: covidwho-2230332

ABSTRACT

Background: Single nucleotide polymorphisms provide information on individuals' potential reactions to environmental factors, infections, diseases, as well as various therapies. A study on SNPs that influence SARS-CoV-2 susceptibility and severity may provide a predictive tool for COVID-19 outcomes and improve the customized coronavirus treatment. Aim: To evaluate the role of human leukocyte antigens DP/DQ and IFNλ4 polymorphisms on COVID-19 outcomes among Egyptian patients. Participants and Methods: The study involved 80 patients with severe COVID-19, 80 patients with mild COVID-19, and 80 non-infected healthy volunteers. Genotyping and allelic discrimination of HLA-DPrs3077 (G/A), HLA-DQrs7453920 (A/G), and IFNλ4 rs73555604 (C/T) SNPs were performed using real-time PCR. Results: Ages were 47.9 ± 8, 44.1 ± 12.1, and 45.8 ± 10 years in severe, mild and non-infected persons. There was a statistically significant association between severe COVID-19 and male gender (p = 0.002). A statistically significant increase in the frequency of HLA-DPrs3077G, HLA-DQrs7453920A, and IFNλ4rs73555604C alleles among severe COVID-19 patients when compared with other groups (p < 0.001). Coexistence of these alleles in the same individual increases the susceptibility to severe COVID-19 by many folds (p < 0.001). Univariate and multivariate logistic regression analysis for the studied parameters showed that old age, male gender, non-vaccination, HLA-DQ rs7453920AG+AA, HLA-DPrs3077GA+GG, and IFNλ4rs73555604CT+CC genotypes are independent risk factors for severe COVID-19 among Egyptian patients. Conclusion: HLA-DQ rs7453920A, HLA-DPrs3077G, and IFNλ4rs73555604C alleles could be used as markers of COVID-19 severity.


Subject(s)
COVID-19 , HLA-DP Antigens , HLA-DQ Antigens , Interleukins , Humans , Male , Alleles , Case-Control Studies , COVID-19/genetics , Genetic Predisposition to Disease , Genotype , HLA-DP Antigens/genetics , HLA-DQ Antigens/genetics , Polymorphism, Single Nucleotide/genetics , SARS-CoV-2 , Interleukins/genetics
13.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: covidwho-2225340

ABSTRACT

HLA genes play a pivotal role in the immune response via presenting the pathogen peptides on the cell surface in a host organism. Here, we studied the association of HLA allele variants of class I (loci A, B, C) and class II (loci DRB1, DQB1, DPB1) genes with the outcome of COVID-19 infection. We performed high-resolution sequencing of class HLA I and class II genes based on the sample population of 157 patients who died from COVID-19 and 76 patients who survived despite severe symptoms. The results were further compared with HLA genotype frequencies in the control population represented by 475 people from the Russian population. Although the obtained data revealed no significant differences between the samples at a locus level, they allowed one to uncover a set of notable alleles potentially contributing to the COVID-19 outcome. Our results did not only confirm the previously discovered fatal role of age or association of DRB1*01:01:01G and DRB1*01:02:01G alleles with severe symptoms and survival, but also allowed us to single out the DQB1*05:03:01G allele and B*14:02:01G~C*08:02:01G haplotype, which were associated with survival. Our findings showed that not only separate allele, but also their haplotype, could serve as potential markers of COVID-19 outcome and be used during triage for hospital admission.


Subject(s)
COVID-19 , Histocompatibility Antigens Class II , Histocompatibility Antigens Class I , Humans , Alleles , COVID-19/genetics , COVID-19/mortality , Gene Frequency , Haplotypes , HLA-DRB1 Chains/genetics , Russia/epidemiology
14.
J Hazard Mater ; 448: 130800, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2180524

ABSTRACT

Disinfectant abuse poses a risk of bacterial evolution against stresses, especially during the coronavirus disease 2019 (COVID-19) pandemic. However, bacterial phenotypes, such as drug resistance and viability, are hard to access quickly. Here, we reported an allele specific isothermal RNA amplification (termed AlleRNA) assay, using an isothermal RNA amplification technique, i.e., nucleic acid sequence-based amplification (NASBA), integrated the amplification refractory mutation system (ARMS), involving the use of sequence-specific primers to allow the amplification of the targets with complete complementary sequences. AlleRNA assay enables rapid and simultaneous detection of the single nucleotide polymorphism (SNP) (a detection limit, a LOD of 0.5 % SNP) and the viability (a LOD of 80 CFU) of the quinolone resistant Salmonella enterica. With the use of AlleRNA assay, we found that the quinolone resistant S. enterica exhibited higher survival ability during exposure toquaternary ammonium salt, 75 % ethanol and peracetic acid, which might be attributed to the upregulation of stress response-associated genescompared with the susceptible counterparts. Additionally, the AlleRNA assay indicated the potential risk in a high-frequency occurrence of viable but nonculturable (VBNC) quinolone resistant S. enterica induced by disinfectants due to the depression of ATP biosynthesis. The excessive usage of disinfectants during the COVID-19 pandemic should be carefully evaluated due to the latent threat to ecological and human health.


Subject(s)
Disinfectants , Drug Resistance, Bacterial , Quinolones , Humans , Alleles , COVID-19/prevention & control , Disinfectants/therapeutic use , Disinfectants/toxicity , Nucleic Acid Amplification Techniques/methods , Nucleotides , Pandemics/prevention & control , Quinolones/pharmacology , RNA , RNA, Bacterial , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology
15.
Hum Immunol ; 84(3): 163-171, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2179264

ABSTRACT

AIMS: The HLA system has been implicated as an underlying determinant for modulating the immune response to SARS-CoV-2. In this study, we aimed to determine the association of patients' HLA genetic profiles with the disease severity of COVID-19 infection. METHODS: Prospective study was conducted on COVID-19 patients (n = 40) admitted to hospitals in Saskatoon, Canada, between March and December 2020. Next-generation sequencing was performed on the patient samples to obtain high-resolution HLA typing profiles. The statistical association between HLA allelic frequency and disease severity was examined. The disease severity was categorized based on the length of hospital stay and intensive care needs or demise during the hospital stay. RESULTS: HLA allelic frequencies of the high and low-severity cohorts were normalized against corresponding background allelic frequencies. In the high-severity cohort, A*02:06 (11.8-fold), B*51:01 (2.4-fold), B*15:01(3.1-fold), C*01:02 (3.3-fold), DRB1*08:02 (31.2-fold), DQ*06:09 (11-fold), and DPB1*04:02(4-fold) were significantly overrepresented (p < 0.05) making these deleterious alleles. In the low-severity cohort, A*24:02 (2.8-fold), B*35:01 (2.8-fold), DRB1*04:07 (5.3-fold), and DRB1*08:11 (22-fold) were found to be significantly overrepresented (p < 0.05) making these protective alleles. These above alleles interact with NK cell antiviral activity via the killer immunoglobulin-like receptors (KIR). The high-severity cohort had a higher predilection for HLA alleles associated with KIR subgroups; Bw4-80I (1.1-fold), and C1 (1.6-fold) which promotes NK cell inhibition, while the low-severity cohort had a higher predilection for Bw4-80T (1.6-fold), and C2 (1.6-fold) which promote NK cell activation. CONCLUSION: In this study, the HLA allelic repository with the distribution of deleterious and protective alleles was found to correlate with the severity of the clinical course in COVID-19. Moreover, the interaction of specific HLA alleles with the KIR-associated subfamily modulates the NK cell-mediated surveillance of SARS-CoV-2. Both deleterious HLA alleles and inhibitory KIR appear prominently in the severe COVID-19 group focusing on the importance of NK cells in the convalescence of COVID-19.


Subject(s)
COVID-19 , HLA Antigens , Humans , HLA Antigens/genetics , Saskatchewan , Alleles , Prospective Studies , COVID-19/genetics , SARS-CoV-2/genetics , Receptors, KIR/genetics
16.
BMC Genomics ; 24(1): 12, 2023 Jan 10.
Article in English | MEDLINE | ID: covidwho-2196043

ABSTRACT

BACKGROUND: COVID-19 caused by the SARS-CoV-2 infection may result in various disease symptoms and severity, ranging from asymptomatic, through mildly symptomatic, up to very severe and even fatal cases. Although environmental, clinical, and social factors play important roles in both susceptibility to the SARS-CoV-2 infection and progress of COVID-19 disease, it is becoming evident that both pathogen and host genetic factors are important too. In this study, we report findings from whole-exome sequencing (WES) of 27 individuals who died due to COVID-19, especially focusing on frequencies of DNA variants in genes previously associated with the SARS-CoV-2 infection and the severity of COVID-19. RESULTS: We selected the risk DNA variants/alleles or target genes using four different approaches: 1) aggregated GWAS results from the GWAS Catalog; 2) selected publications from PubMed; 3) the aggregated results of the Host Genetics Initiative database; and 4) a commercial DNA variant annotation/interpretation tool providing its own knowledgebase. We divided these variants/genes into those reported to influence the susceptibility to the SARS-CoV-2 infection and those influencing the severity of COVID-19. Based on the above, we compared the frequencies of alleles found in the fatal COVID-19 cases to the frequencies identified in two population control datasets (non-Finnish European population from the gnomAD database and genomic frequencies specific for the Slovak population from our own database). When compared to both control population datasets, our analyses indicated a trend of higher frequencies of severe COVID-19 associated risk alleles among fatal COVID-19 cases. This trend reached statistical significance specifically when using the HGI-derived variant list. We also analysed other approaches to WES data evaluation, demonstrating its utility as well as limitations. CONCLUSIONS: Although our results proved the likely involvement of host genetic factors pointed out by previous studies looking into severity of COVID-19 disease, careful considerations of the molecular-testing strategies and the evaluated genomic positions may have a strong impact on the utility of genomic testing.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2 , Exome Sequencing , Alleles , DNA
17.
HLA ; 101(6): 691-692, 2023 06.
Article in English | MEDLINE | ID: covidwho-2193246

ABSTRACT

The new allele HLA-C*12:376 showed one nonsynonymous nucleotide difference compared with the C*12:03:01:01 allele in codon 30.


Subject(s)
COVID-19 , HLA-C Antigens , Humans , HLA-C Antigens/genetics , Base Sequence , Alleles , Sequence Analysis, DNA , Histocompatibility Testing , COVID-19/genetics
18.
Mod Rheumatol Case Rep ; 7(2): 426-430, 2023 06 19.
Article in English | MEDLINE | ID: covidwho-2189397

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents with severe pneumonia and fatal systemic complications. Currently, SARS-CoV-2 vaccines are effective in reducing the risk of new onset and getting worse of the disease. However, autoimmune diseases such as antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) have been reported to develop after COVID-19 vaccine administration. A 71-year-old woman presented with fever, malaise, urinary abnormalities, and renal dysfunction after receiving the COVID-19 vaccine (Pfizer-BioNTech). We clinically diagnosed AAV with her manifestations and serological test (myeloperoxidase-ANCA-positive). Her clinical findings were improved after immunosuppressive therapy. We examined her genetic susceptibility to AAV, and we found that her allele was HLA-DRB1*09:01, which is a risk allele of myeloperoxidase-AAV. Mechanistically, SARS-CoV-2 vaccines would activate immunity, including neutrophils, and trigger AAV onset in this patient with a genetic risk to develop AAV. The pathophysiology of this case would share with that of autoimmune/inflammatory syndrome induced by adjuvants in the absence of external adjuvants.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , COVID-19 , Female , Humans , Aged , COVID-19 Vaccines/adverse effects , HLA-DRB1 Chains/genetics , Peroxidase , SARS-CoV-2/genetics , Alleles , Antibodies, Antineutrophil Cytoplasmic , COVID-19/prevention & control , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/etiology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Vaccination/adverse effects
19.
PeerJ ; 11: e14707, 2023.
Article in English | MEDLINE | ID: covidwho-2203240

ABSTRACT

In mid-2021, the SARS-CoV-2 Delta variant caused the third wave of the COVID-19 pandemic in several countries worldwide. The pivotal studies were aimed at studying changes in the efficiency of neutralizing antibodies to the spike protein. However, much less attention was paid to the T-cell response and the presentation of virus peptides by MHC-I molecules. In this study, we compared the features of the HLA-I genotype in symptomatic patients with COVID-19 in the first and third waves of the pandemic. As a result, we could identify the diminishing of carriers of the HLA-A*01:01 allele in the third wave and demonstrate the unique properties of this allele. Thus, HLA-A*01:01-binding immunoprevalent epitopes are mostly derived from ORF1ab. A set of epitopes from ORF1ab was tested, and their high immunogenicity was confirmed. Moreover, analysis of the results of single-cell phenotyping of T-cells in recovered patients showed that the predominant phenotype in HLA-A*01:01 carriers is central memory T-cells. The predominance of T-lymphocytes of this phenotype may contribute to forming long-term T-cell immunity in carriers of this allele. Our results can be the basis for highly effective vaccines based on ORF1ab peptides.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Alleles , Pandemics/prevention & control , Epitopes, T-Lymphocyte , CD8-Positive T-Lymphocytes , HLA-A Antigens
20.
Cells ; 11(24)2022 12 16.
Article in English | MEDLINE | ID: covidwho-2163253

ABSTRACT

Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19.


Subject(s)
COVID-19 , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Alleles , Cystic Fibrosis/pathology , COVID-19/genetics , Heterozygote
SELECTION OF CITATIONS
SEARCH DETAIL